Random Forest Algorithm for Land Cover Classification
نویسنده
چکیده
Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial neural, decision trees, support vector machines, and ensembles classifiers. Various ensemble classification algorithms have been proposed in recent years. Most widely used ensemble classification algorithm is Random Forest. The Random Forest classifier uses bootstrap aggregating for form an ensemble of classification and induction tree like tree classifiers. A few researchers have used Random Forest for land cover analysis. However, the potential of Random Forest has not yet been fully explored by the remote sensing community. In this paper we compare classification accuracy of Random Forest with other commonly used algorithms such as the maximum likelihood, minimum distance, decision tree, neural network, and support vector machine classifiers. KeywordsRandom Forest, Induction Tree, Supervised Classifiers, Multispectral Imagery __________________________________________________*****_________________________________________________
منابع مشابه
Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملAn Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms
Land cover mapping for large regions often employs satellite images of medium to coarse spatial resolution, which complicates mapping of discrete classes. Class memberships, which estimate the proportion of each class for every pixel, have been suggested as an alternative. This paper compares different strategies of training data allocation for discrete and continuous land cover mapping using c...
متن کاملMapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar's Tanintharyi Region
We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove, lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of 16 natural and human land use classes using both a Random Forest algorithm and a multivariate Gaussian model while...
متن کاملIRS-1C image data applications for land use/land cover mapping in Zagros region, Case study: Ilam watershed, West of Iran
In land use planning, mapping the present land use / land cover situation is a necessary tool for determining the current condition and for identifying land use trends. In this study, in order to provide a land use/ land cover map for Ilam watershed, the IRS-1C image data from 25th April 2006 were used. Initial qualitative evaluation on data showed no significant radiometric error. Ortho-rectif...
متن کاملAccuracy Comparison of Land Cover Mapping Using the Object- Oriented Image Classification with Machine Learning Algorithms
Land cover mapping provides basic information for advanced science such as ecological management, biodiversity conservation, forest planning and so on. In remote sensing research, the process of creating an accurate land cover map is an important subject. Recently, there has been growing research interest in the object-oriented image classification techniques. The object-oriented image classifi...
متن کامل